İKLİM KONTROLÜNDE ŞEKİLLENEN AKARSU SEKİLERİ VE SEKİLERİN BEŞERİ KULLANIMI

Author :  

Year-Number: 2019-98
Language : null
Konu : Fiziki Coğrafya
Number of pages: 73-91
Mendeley EndNote Alıntı Yap

Abstract

İklim ve tektonizma, flüvyal sistemlerde akarsu sekilerinin oluşumunu ve şekillenmesini denetleyen en önemli kontrol mekanizmalarıdır. Bunlardan iklimsel değişimlerin nehir sistemleri üzerindeki etkisi, sekilerin morfolojik ve sedimantolojik olarak birbirinden farklı olmasına neden olmaktadır. Bu fark ise peleo ortam analizlerinde flüvyal mimarinin önemini bir kez daha ortaya koymaktadır. Ancak, iklim-flüvyal sistem etkileşimine ilişkin bilgiler her zaman istenilen yalınlıkta değildir. Örneğin, iklimsel bir döngü (sıcak-soğuk dönem ardalanması) sürecinde oluşan seki sedimantasyonun, sadece iklimle değil, tektonik birikme-kazılma süreçleriyle ya da nehirlerin yanal göçü gibi farklı etkenlerle de şekillenebilmesi bu konudaki en büyük soru işaretlerinden biridir. Bunun yanında, iklim-flüvyal sistem etkileşiminde yalınlığı bozan diğer tartışma konuları aşağıdaki gibidir. a. Sekilerin içyapısında karakteristik bir sedimanter yapı var mıdır? Her bir sedimanter tabakanın oluşum mekanizması kesin olarak tespit edilebilir mi? b. İklim denetimindeki bir flüvyal aşınma-birikme döngüsü içinde meydana gelen sedimanter katmanların ve aşınım safhalarının rölatif yaşları nelerdir? Hangi süreç, hangi iklimsel döngüye karşılık gelmektedir? c. İklim döngüsü ile bağlantılı sekilerin basamaklı seki serileri halinde korunması, hangi senaryolarla analiz edilebilir? d. Flüvyal alanların beşeri kullanımına ilişkin bulgular nasıl elde edilebilir ve bu bulgular ne çeşit bir veri kaynağı sağlayabilir? Bu makale, söz konusu sorulara yanıt aramak amacıyla hazırlanmıştır.

Keywords

Abstract

Climate and tectonism are most important control mechanisms which monitor forming fluvial terraces. The influence of the climatic changes on the fluvial systems causes different terraces in terms of sedimantological and morphological structures. This difference reveals the importance of fluvial architecture for the paleo-environment analysis. However the information of he interaction between climate and fluvial system is not clean everytime. For instance, it is one of the most important questions that the terrace sedimantation that formed in a climatic cycle (sequential warm and cold periods) can be formed by the tectonic accumulation-erosion processes or by the different factors like as the lateral migration of the rivers. Besides the other discussing topics which reverse the simplex for the interaction of climate-river systems are below. a. Is there any characteristic sedimantary structure in the terrace sections? Can be determined accurately the forming mechanism of every sedimantary layers. b. What are the relative ages of the sedimantary layers and their erosive phases which formed in a fluvial incision-accumulation cycle? Which processes and phases are consistent? c. Which scenarios can analysed the preservation of the terraces sequences which related to the climatic cycle? d. How the finding about human usage of fluvial areas can obtain, and which information can be derived from these findings? This article aims to search the answers for these questions.

Keywords


  • Alonso, A., Garzon, G., (1994), Quaternary evolution of a meandering gravel bed river in cent- ral Spain, Terra Nova, 6, 465-475.

  • Antoine, P., (1994), The Somme valley terrace system (northern Franc): a model of river res- ponse to Quaternary climatic variations since 800,000 BP, Terra Nov, 6, 453-464.

  • Antoine, P., (1997), Modifications des systemes fluviatilesala transition Pleniglaciaire- Tar- diglaciaire et al. 'Holocene: l'exemple du bassin de la Somme (Nord de la France), Geographie Physique et Quaternaire, 51, 93-106.

  • Antoine, P., Lautridou, J.-P. & Laurent, M., (2000), Long-term fluvial archives in NW France: response of the Seine and Somme Rivers to tectonic movements, climatic variations and sea-level changes, Geomorphology,33, 183-207.

  • Avşin, N., (2013), Göksu Nehri vadisinin flüvyal jeomorfolojisi (Mut-Silifke arası), Uluslararası Sosyal Araştırmalar Dergisi, 34, 314-334.

  • Avşin N., Vandenberghe, J., van Balen, R., Güneç Kıyak, N. & Öztürk, T., (2019), Tectonic and climatic controls on Quaternary fluvial processes and river terrace formation in a Mediterranean setting, the Göksu River, southern Turkey, Quaternary Research, 91, 533-547.

  • Bluck, B.J., (1979), Structure of coarse-grained braided stream alluvium, Transactions of the Royal Society of Edinburgh, 70, 181-221.

  • Bridgland, D.R., (1994), Quaternary of the Thames. In: Geological Conservation Review Series, London: Chapman&Hall.

  • Bridgland, D., (2000), River terrace systems in northwest Europe: an archive of environmental change, uplift and early human occupation, Quaternary Science Reviews, 19, 1293– 1303.

  • Bridgland, D.R., (2006), The Middle and Upper Pleistocene sequence in the Lower Thames: a record of Milankovitch climatic fluctuation and early human occupation of southern Britain, Proceedings of the Geologists' Association, 117, 281-305.

  • Bridgland, D., (2010), The record from British Quaternary river systems within the context of global fluvial archives, Journal of Quaternary Science, 25, 433-446.

  • Bridgland, D.R., Allen, P., (1996), A revised model for terrace formation and its significance for the early middle Pleistocene terrace aggradations of north-east Essex, England, In: Turner, C. (Ed.), The Early Middle Pleistocene in Europe, (121-134), Rotterdam: Balkema.

  • Bridgland, D.R., Antoine, P., Limondin-Lozouet, N., Santisteban, J.I., Westaway, R. & White, M.J., (2006), The Palaeolithic occupation of Europe as revealed by evidence from the rivers: data from IGCP 449, Journal of Quaternary Research, 21, 437-455.

  • Bridgland, D.R., Westaway, R., (2008), Climatically controlled river terrace staircases: a worldwide Quaternary phenomenon, Geomorphology, 98, 285-315.

  • Busschers, F.S., Kasse, C., van Balen, R.T., Vandenberghe, J., Cohen, K.M., Weerts, H.J.T., Wallinga, J. & Cleveringa, P., (2007), Imprints of Late-Pleistocene climate change, sealevel change and glacio-hydro-isostacy on the sedimentary record of the Rhine-Meuse river system (southern North Sea Basin, the Netherlands), Quaternary Science Reviews, 26, 3216-3248.

  • Cordier, S., (2006), Fluvial system response to Middle and Upper Pleistocene climate change in the Meurthe and Moselle valleys (eastern Paris basin and Rhenish Massif), Quaternary Science Reviews, 25, 1460-1474.

  • De Moor, J.J.W., Kasse, C., Van Balen, R., Vandenberghe, J. & Wallinga, J., (2008), Human and climate impact on catchment development during the Holocene Geul River, the Netherlands, Geomorphology, 98, 316-339.

  • Doğan, U., (2005). Holocene fluvial development of the Upper Tigris Valley (Southeastern Turkey) as documented by archaeological data. Quaternary International 129, 75-86.

  • Doğan, U., (2010), Fluvial response to climate change during and after the Last Glacial Maxi- mum in Central Anatolia, Turkey, Quaternary International, 222, 221–229.

  • Doğan, U., (2011), Climate-controlled river terrace formation in the Kızılırmak Valley, Cappa- docia section, Turkey: inferred from Ar–Ar dating of Quaternary basalts and terraces stratigraphy, Geomorphology, 126, 66–81.

  • Gębica, P., Starkel, L., Jacyszyn, A. & Krąpiec, M., (2013), Medieval accumulation in the Up- per Dniester river: the role of human impact and climate change in the Eastern Carpathian foreland, Quaternary International, 293, 207-218.

  • Gibbard, P.L., Lewin, J., (2002), Climate and related controls on interglacial fluvial sedimenta- tion in lowland Britain, Sedimentary Geolog, 151, 187-210.

  • Gibbard, P.L., Lewin, J., (2009), River incision and terrace formation in the Late Cenozoic of Europe, Tectonophysics, 474, 41-55.

  • Huijzer, A.S., Mücher, H., (1993), Micro morphology of the Intra-Saalian Interglacial Pedo- complex and Eemian Rocourt Soil in the Belvederepit (Maastricht, The Netherlands), Mededelingen Rijks Geologische Dienst, 47, 31-40.

  • Huisink, M., (1997), Late Glacial sedimentological and morphological changes in a lowland river as a response to climatic change: the Maas, Netherlands, Journal of Quaternary Science, 12, 209-223.

  • Janssens, M.M., Kasse, C. & Bohncke, S.J.P., Greaves, H., Cohen, K.M., Wallinga, J., Hoek,W., (2012), Climate-driven fluvial development and valley abandonment at the last glacial-interglacial transition (Oude Ijssel-Rhine, Germany), Netherlands Journal of Geosciences, 91, 37-62.

  • Kalicki, T., (1991), The evolution of the Vistula river valley between Cracow and Niepołomice in Late Vistulian and Holocene times. In: Starkel, L. (Ed.), Evolution of the Vistula River Valley During the Last 15,000 Years, Geographical Studies, 6, 11-37.

  • Kasse, C., Vandenberghe, J., Bohncke, S. J. P., (1995), European river activity and climatic change during the Lateglacial and early Holocene, Paläoklimaforschung/Palaeoclimate Research Special Issue, 14, 123-150.

  • Kiden, P., Törnqvist, T., (1998), Can river terrace flights be used to quantify Quaternary tecto- nic uplift rates, Journal of Quaternary Science, 13, 573-575.

  • Kozarski, S., (1991). Warta- a case study of a lowland river. In: Starkel, L.,Gregory, K.J., Thor- nes, J.B. (Eds.), Temperate Palaeohydrology, (189-215), New York,: Wiley.

  • Leopold, L.B., Wolman, L.G. & Miller, J., (1964), Fluvial Processes in Geomorphology, San Francisco: W.H. Freeman.

  • Lewin, J.,Gibbard, P.L., (2010), Quaternary river terraces in England: forms, sediments and processes, Geomorphology, 120, 293-311.

  • Lu, H.,Zhang, H., Wang, S.J., Cosgrove, R., Sun, X., Zhao, J., Sun, D., Zhao, C., Shen, C. & Wei, M., (2011), Multi phase timing of homin in occupations and the paleo environment in Luonan Basin, Central China, Quaternary Research, 76, 142-147.

  • Maddy, D., (1997), Uplift driven valley incision and river terrace formation in southern Eng- land, Journal of Quaternary Science, 12, 439-545.

  • Maddy, D., Bridgland, D. & Westaway, R., (2001), Uplift-driven valley incision and climate- controlled river terrace development in the Thames Valley, UK, Quaternary International, 79, 23-36.

  • Marren, P.M., Toomath, S.C., (2013), Fluvial adjustments in response to glacier retreat: Skafta- fellsjokull, Iceland. Borea, 42, 57-70.

  • Martins, A.A., Cunha, P.P., Rosina, P., Osterbeek, L., Cura, S., Grimaldi, S., Gomes, J., Buyla- ert, J.-P., Murray, A.S. & Matos, J., (2010), Geoarchaeology of Pleistocene openair sites in the Villa Nova da Barquinha-Santa Cita area (Lower Tejo River basin, central Portugal), Proceedings of the Geologists' Association, 121, 128-140.

  • Miall, A.D., (1978), Lithofacies types and vertical profile models in braided rivers: a summary. In: Miall, A.D. (Ed.), Fluvial Sedimentology, (597-604), Canada: Society Petroleum Geology Memoir.

  • Miall, A., (1996), The Geology of Fluvial Deposits. Berlin: Springer.

  • Mol, J., 1997. Fluvial response to Weichselian climate changes in the Niederlausitz (Germany). Journal of Quaternary Scienc, 12, 43-60.

  • Mol, J., Vandenberghe, J. & Kasse, C., (2000), River response to variations of periglacial clima- te, Geomorphology, 33, 131-148.

  • Mozzi, P., Azevedo, T., Nunes, E. & Raposo, L., (2000), Middle terrace deposits of the Tagus river in Alpiarça, Portugal in relation to early human occupation, Quaternary Research, 54, 359-371.

  • Olszak, J. M., (2011), Evolution of fluvial terraces in response to climate change and tectonic uplift during the Pleistocene: Evidence from Kamienica and Ochotnica River valleys (Polish Outer Carpathians), Geomorphology, 129, 71-78.

  • Olszak, J., Adamiec, G., (2016), OSL-based chronostratigraphy of river terraces in mountainous areas, Dunajec basin, West Carpathians: a revision of the climatostratigraphical approach, Boreas, 45, 483–493.

  • Pan, B., Hu, Z., Wang, J., Vandenberghe, J. & Hu, X., (2010), A magnetostratigraphic record of landscape development in the eastern Ordos Plateau, China, Geomorphology, 125, 225238.

  • Panin, A.V., Nefedov, V.S., (2010), Analysis of variations in the regime of river and lakes in the Upper Volga and Upper Zapadnaya Dvina based on archaeological geomorphological data, Water Resources, 37, 16-32.

  • Peters, G., Van Balen, R.T., (2007), Pleistocene tectonics inferred from the fluvial terraces of the northern Upper Rhine Graben, Germany, Tectonophysics, 430, 41–65.

  • Pickarski, N., Kwiecien, O., Langgut, D. & Litt, T., (2015), Abrupt climate and vegetation vari- ability of eastern Anatolia during the last glacial, Climate of the Past, 11, 1491–1505

  • Roebroeks, W., De Loecker, D., Hennekens, P. & Van Ieperen, M., (1993), On the Archaeology of the Maastricht-Belvedere, Mededelingen Rijks Geologische Dienst, 47, 69-79.

  • Rust, B.R., (1972), Structure and process in a braided river, Sedimentology,18, 221-245.

  • Schielein, P., Schellmann, G., Lomax, J., Preusser, F. & Fiebig, M., (2015), Chronostratigraphy of the Hochterassen in the lower Lech valley (North Alpine Foreland), Quaternary Science Journal, 64, 15–29.

  • Schirmer, W., (1995), Valley bottoms in the late Quaternary, Zeitschrift für Geomorphologie,

  • Schumm, S.A., (1977), The Fluvial System, New York.:Wiley.

  • Schumm, S.A., (1979), Geomorphic Thresholds: the Concept and its Applications, Transactions Institute British Geographers, 4,485-515.

  • Stange, K., van Balen, R.T., Carcaillet, J. & Vandenberghe, J., (2013), Terrace staircase devel- opment in the Southern Pyrenees Foreland: inferences from 10Be terrace exposure ages at the Segre River, Global and Planetary Change, 101, 97–112.

  • Starkel, L., (1981), The Evolution of the Wisłoka Valley Near Dębica During the Late Glacial and Holocene, Folia Quaternaria, 53, 1-91.

  • Starkel, L., (1994), Reflection of Glaciale Interglacial cycle in the evolution of the Vistula river basin, Poland, Terra Nova, 6, 486-494.

  • Starkel, L., (2003), Climatically controlled terraces in uplifting mountain areas, Quaternary Science Reviews, 22, 2189–2198.

  • Starkel, L., Michczynska, D., Gebica, P., Kiss, T. & Panin, A., (2015), Climatic fluctuations reflected in the evolution of fluvial systems of Central–Eastern Europe (60–8 ka cal BP), Quaternary International, 388, 97–118.

  • Sun, X., Lu, H.,Wang, S., Yi, S., Shen, C. & Zhang,W., (2013), TL- OSL dating of Longyadong Middle Paleolithic site and paleo environmental implications for hominin occupation in Luonan Basin (central China), Quaternary Research, 79, 168-174.

  • Szumanski, A., (1983), Palaeochannels of large meanders in the river valleys of the Polish Lowland, Quaternary Studies in Poland, 4, 207-216.

  • Şenkul, Ç., Doğan, U., (2013), Vegetation and climate of Anatolia and adjacent regions during the Last Glacial period, Quaternary International, 302, 110–122.

  • Tebbens, L., Veldkamp, A., (2001), Exploring the possibilities and limitations of modelling Quaternary fluvial dynamics. In: Maddy, D., Macklin, M., Woodward, J. (Eds.), River Basin Sediment Systems: Archives of Environmental Change., (469-484), Rotterdam,: Balkema.

  • Turner, F., Tolksdorf, J.F., Viehberg, F., Schwalb, A., Kaiser, K., Bittmann, F., von Bramann, U., Pott, R., Staesche, U., Breest, K. & Veil, S., (2013), Lateglacial/early Holocene fluvial reactions of the Jeetzel river (Elbe valley, northern Germany) to abrupt climatic and environmental changes, Quaternary Science Reviews, 60, 91-109.

  • Van Huissteden, J., Van der Valk, L. & Vandenberghe, J., (1987), Geomorphological evolution of a lowland valley system during the Weichselian, Earth Surface Processes Landforms,

  • Vandenberghe, J., (1993a), Changing fluvial processes under changing periglacial conditions, Zeitschrift für Geomorphologie, 88, 17-28.

  • Vandenberghe, J., (1993b), River Terrace Development and its Relation to Climate: the Saalian Caberg Terrace of the Maas River Near Maastricht (The Netherlands), Mededelingen Rijks Geologische Dienst N.S., 47, 19-24.

  • Vandenberghe, J., (1995a), Timescales, climate and river development, Quaternary Science Reviews, 14, 631-638.

  • Vandenberghe, J., (1995b), The Saalian Complex and the First Traces of Human Activity in The Netherlands in a Stratigraphic and Ecologic Context, Mededelingen Rijks Geologische Dienst, 52, 187-194.

  • Vandenberghe, J., (1995c), The role of rivers in palaeoclimatic reconstruction. In: Frenzel, B., Vandenberghe, J., Kasse, C., Bohncke, S., Gl€aser, B. (Eds.), European River Activity and Climatic Change During the Lateglacial and Early Holocene, Paleaoklimaforschung, 14, 11-19.

  • Vandenberghe, J., (2001), A typology of Pleistocene cold-based rivers, Quaternary Internatio- nal, 79, 111-121.

  • Vandenberghe, J., (2002), The relation between climate and river processes, landforms and de- posits during the Quaternary, Quaternary International, 91, 17-23.

  • Vandenberghe, J., (2003), Climate forcing of fluvial system development: an evolution of ideas, Quaternary Science Review, 22, 2053-2060.

  • Vandenberghe, J., (2008), The fluvial cycle at coldewarmecold transitions in lowland regions: a refinement of theory; Geomorphology, 98, 275-284.

  • Vandenberghe, J., Maddy, D., (2001), Response of river systems to climate change, Quaternary International, 79, 1–3.

  • Vandenberghe, J., Woo, M.K., (2002), Modern and ancient periglacial river types, Progress in Physical Geography, 26, 479-506.

  • Vandenberghe, J., Beyens, L., Paris, P., Kasse, C. & Gouman, M., (1984), Palaeomorphological and -botanical evolution of small lowland valleys (Mark valley), Catena, 11, 229-238.

  • Vandenberghe, J., Gracheva, R. & Sorokin, A., (2010), Postglacial floodplain development and Mesolithice Neolithic occupation in the Russian forest zone, Proceedings of the Geologists' Association, 121, 229-237.

  • Vandenberghe, J., Kasse, C., Bohncke, S. & Kozarski, S., (1994), Climate-related riveractivity at the Weichseliane Holocene transition: a comparative study of the Warta and Maas rivers, Terra Nova, 6, 476-485.

  • Vandenberghe, J., Mommersteeg, H. & Edelman, D., (1993), Lithogenesis and Geomorphologi- cal Processes of the Pleisocene Deposits at Belvedere, Mededelingen Rijks Geologische Dienst, 47, 7-18.

  • Vandenberghe, J., Wang, X. & Lu, H., (2011), Differential impact of small-scaled tectonic mo- vements on fluvial morphology and sedimentology (the Huang shui catchment, NE Tibet Plateau), Geomorphology, 134, 171-185.

  • Vandenberghe, J., (2015), River terraces as a response to climatic forcing: formation processes, sedimentary characteristics and sites for human occupation, Earth and Climate, 370, 3–

  • Velichko, A.A., Pisareva1, V.V., Sedov, S.N., Sinitsyn, A.A. & Timireva, S.N., (2009) Paleo- geography of Kostenki-14 (Markina Gora), Archaeology Ethnology & Anthropology of Eurasia, 37, 35-50.

  • Viveen, W., Schoorl, W.M., Veldkamp, A., Van Balen, R.T., Desprat, S. & Vidal-omani, J.R., (2013), Reconstructing the interacting effects of base level, climate, and tectonic uplift in the lower Mino River terrace record: a gradient modeling evaluation, Geomorphology, 186, 96-118.

  • Wang, X., Vandenberghe, D., Yi, S., Vandenberghe, J., Lu, H., van Balen, R.T. & Van den Haute, P., (2013), Late Quaternary palaeoclimatic and geomorphological evolution at the interface between the Menuyan basin and the Qilian Mountains (northeastern Tibetan Plateau), Quaternary Research, 80, 534-544.

  • Wang, X., Vandenberghe, J., Shuangwen, Y., Van Balen, R.T. & Lu, H., (2015), Climate- dependent fluvial architecture and processes on a suborbital timescale in areas of rapid tectonic uplift: an example from the NE Tibetan Plateau, Global and Planetary Change, 133, 318–329.

                                                                                                                                                                                                        
  • Article Statistics